Appendix B: Table of Combustion Constants


On

40

GO

Ft3/ft3 of Combustible lb/lb of Combustible

—————————————————————————————————— Experimental

Error in Heats of

Required for Required for Combustion

Combustion Flue Products Combustion Flue Products ±%

подпись: ft3/ft3 of combustible lb/lb of combustible
 experimental
error in heats of
required for required for combustion
combustion flue products combustion flue products ±%
Density Related*5 Heat of Combustion0

1

Carbon

C

12.01

Gross

Net*1

Gross

14,093e

Netd

14,093e

O2

N2

Air

Co2

H2o

N2

O2

2.664

N2

8.863

Air

11.527

Co2

3.664

H2o

N2

8.863

0.012

2

Hydrogen

H2

2.016

0.00533

187.723

0.06959

325.0

275.0

61Д00

51,623

0.5

1.882

2.382

1.0

1.882

7.937

26.41

34.344

8.937

26.41

0.015

3

Oxygen

O2

32.000

0.08461

11.819

1.1053

4

Nitrogen

N2

28.016

0.07439′

13.443′

0.9718′

5

Carbon

CO

28.01

0.07404

13.506

0.9672

321.8

321.8

4,347

4,347

0.5

1.882

2.382

1.0

1.882

0.571

1.900

2.471

1.571

1.900

0.045

6

Monoxide

Carbon

Co2

44.01

0.1170

8.548

1.5282

Dioxide

Paraffin series CnH2n + 2 7 Methane CH4

16.041

0.4243

23.565

0.5543

1013.2

913.1

23,879

21,520

2.0

7.528

9.528

1.0

2.0

7.528

3.990

13.28

17.265

2.744

2.246

13.28

0.033

8

Ethane

Ca

30.067

0.08029′

12.455′

0.08029′

1792

1641

22,320

20,432

3.5

13.18

16.675

2.0

3.0

13.18

3.725

12.39

16.119

2.927

1.798

12.39

0.030

9

Propane

C3h8

44.092

0.1196′

8.365′

0.08029′

2590

2385

21,661

19,944

5.0

18.82

23.821

3.0

4.0

18.82

3.629

12.07

15.703

2.994

1.634

12.07

0.023

10

«-Butane

C4H10

58.118

0.1582′

6.321′

0.08029′

3370

3113

21,308

19,680

6.5

24.47

30.967

4.0

5.0

24.47

3.579

11.91

15.487

3.029

1.550

11.91

0.022

11

Isobutane

C4H10

58.118

0.1582′

6.321′

0.08029′

3363

3105

21,257

19,629

6.5

24.47

30.967

4.0

5.0

24.47

3.579

11.91

15.487

3.029

1.550

11.91

0.019

12

N-Pentane

C5H12

72.144

0.1904′

5.252′

0.08029′

4016

3709

21,091

19,517

8.0

30.11

38.114

5.0

6.0

30.11

3.548

11.81

15.353

3.050

1.498

11.81

0.025

13

Isopentane

C5H12

72.144

0.1904′

5.252′

0.08029′

4008

3716

21,052

19,478

8.0

30.11

38.114

5.0

6.0

30.11

3.548

11.81

15.353

3.050

1.498

11.81

0.071

14

Neopentane

C5H12

72.144

0.1904′

5.252′

0.08029′

3993

3693

20,970

19,396

8.0

30.11

38.114

5.0

6.0

30.11

3.548

11.81

15.353

3.050

1.498

11.81

0.11

15

N-Hexane

QHM

86.169

0.2274′

0.08029′

0.08029′

4762

4412

20,940

19,403

9.5

35.76

45.260

6.0

7.0

35.76

3.528

11.74

15.266

3.064

1.464

11.74

0.05

Specific Specific Gravity Molecular Density Volume of Air

No. Substance Formula Weight3 lb/ft3 ft3/lb = 1.000 Btu/ft3 Btu/lb

Olefin series CnH2n

16

Ethylene

QH4

28.051

0.07456

13.412

0.9740

1613.8

1513.2

21,644

20,295

3.0

11.29

14.293

2.0

2.0

11.29

3.422

11.39

14.807

3.138

1.285

11.39

0.021

17

Propylene

C3H6

42.077

0.1110′

9.007′

1.4504′

2336

2186

21,041

19,691

4.5

16.94

21.439

3.0

3.0

16.94

3.422

11.39

14.807

3.138

1.285

11.39

0.031

18

N-Butene

(butylene)

C4H8

56.102

0.1480′

6.756′

1.9336′

3084

2885

20,840

19,496

6.0

22.59

28.585

4.0

4.0

22.59

3.422

11.39

14.807

3.138

1.285

11.39

0.031

19

Isobutene

C4H8

56.102

0.1480′

6.756′

1.9336′

3068

2869

20,730

19,382

6.0

22.59

28.585

4.0

4.0

22.59

3.422

11.39

14.807

3.138

1.285

11.39

0.031

20

N-Pentene

QH10

70.128

0.1852′

5.400′

2.4190′

3836

3586

20,712

19,363

7.5

28.23

35.732

5.0

5.0

28.23

3.422

11.39

14.807

3.138

1.285

11.39

0.037

Aromatic series CnH2

21

Benzene

QH6

78.107

0.2060′

4.852′

2.6920′

3751

3601

18,210

17,480

7.5 28.23

35.732

6.0

3.0

28.23

3.073

10.22

13.297

3.381

0.692

10.22

0.12

22

Toluene

C7H8

92.132

0.2431′

4.113′

3.1760′

4484

4284

18,440

17,620

9.0 33.88

42.878

7.0

4.0

33.88

3.126

10.4

13.527

3.344

0.782

10.4

0.21

23

Xylene

С8Ню

106.16

0.2803′

3.567′

3.6618′

5230

4980

18,650

17,760

10.5 39.52

50.024

8.0

5.0

39.52

3.165

10.53

13.695

3.317

0.849

10.53

0.36

Miscellaneous gases

24

Acetylene

CA

26.036

0.06971

14.344

0.9107

1499

1448

21,500

20,776

2.5

9.411

11.911

2.0

1.0

9.411

3.073

10.22

13.297

3.381

0.692

10.22

0.16

25

Naphthalene

^10^8

128.16

0.3384′

2.955′

4.4208′

5854®

5654®

17,298®

16,708®

12.0

45.17

57.170

10.0

4.0

45.17

2.996

9.968

12.964

3.434

0.562

9.968

—8

26

Methyl

Alcohol

CH3OH

32.041

0.0846′

11.820′

1.1052′

867.9

768.0

10,259

9,078

1.5

5.646

7.146

1.0

2.0

5.646

1.498

4.984

6.482

1.374

1.125

4.984

0.027

27

Ethyl

Alcohol

CjHjOH

46.067

0.1216′

8.221′

1.5890′

1600.3

1450.5

13,161

11,929

3.0

11.29

14.293

2.0

3.0

11.29

2.084

6.934

9.018

1.922

1.170

6.934

0.030

28

Ammonia

NH3

17.031

0.0456′

21.914′

0.5961′

441.1

365.1

9,668

8,001

0.75

2.823

3.573

1.5

3.323

1.409

4.688

6.097

1.587

5.511

0.088

29

Sulfur

S

32.06

3,983

3,983

So2

0.998

3.287

4.285

1.998

So2

3.287

0.071

30

Hydrogen

Sulfide

H2S

34.076

0.09109′

10.979′

1.1898′

647

596

7,100

6,545

1.5

5.646

7.146

1.0

1.0

5.646

1.409

4.688

6.097

1.880

0.529

4.688

0.30

31

Sulfur

Dioxide

So2

64.06

0.1733

5.770

2.264

32

Water vapor

H2o

18.016

0.04758′

21.017′

0.6215′

33

Air

28.9

0.07655

13.063

1.0000

Appendix B

подпись: appendix bNote: All gas volumes corrected to 60°F and 30 in. Hg dry. For gases saturated with water at 60°F/1.73% of the British thermal unit value must be deducted.

A Calculated from atomic weights given in Journal of the American Chemical Society, February 1937.

B Densities calculated from values given in grams per liter at open cycle and 760 mm in the International Critical Tables allowing for the known deviations from the gas laws. Where the coefficient of expansion was not available, the assumed value was taken as 0.0037/°C. Compare this with 0.003662, which is the coefficient for a perfect gas. Where no densities were available, the volume of the mole was taken as 22.4115 L.

C Converted to mean British thermal units per pound (1/180 of the heat per pound of water from 32 to 212°F) from data by Frederick D. Rossini, National Bureau of Standards, letter of April 10, 1937, except as noted.

D Deduction from gross to net heating value determined by deducting 18,919 Btu/lb mol of water in the products of combustion. Osborne, Stimson, and Ginnings, Mechanical Engineering, p. 163, March 1935, and Osborne, Stimson, and Fiock, National Bureau of Standards Research Paper 209.

E National Bureau of Standards, RP 1141.

F Denotes that either the density or the coefficient of expansion has been assumed. Some of the materials cannot exist as gases at 60°F and 30 in. Hg pressure, in which case the values are theoretical ones given for ease of calculation of gas problems. Under the actual concentrations in which these materials are present, their partial pressure is low enough to keep them as gases.

S From third edition of Combustion.

Source: Based on Fuel Flue Gases, 1941 Edition, courtesy of American Gas Association.

[1] The stress values decrease rather rapidly at high temperatures.

• The deterioration is more marked with carbon steel, limiting its usage at elevated temperatures >450°C (~850°F).

• SA 302 is a popular alloy plate material for high-pressure drums due to its sus­tained high tensility.

• Cr material, 9%, is very well suited for high-temperature tubes and pipes because of its much higher stresses.

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.


gazogenerator.com